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Abstract How much evidence would it take to convince climate sceptics that5

they are wrong? I explore this question within an empirical Bayesian frame-6

work. I consider a group of stylised sceptics and examine how these individ-7

uals rationally update their beliefs in the face of ongoing climate change. I8

find that available evidence in the form of instrumental climate data tends to9

overwhelm all but the most extreme priors. Most sceptics form updated beliefs10

about climate sensitivity that correspond closely to estimates from the scien-11

tific literature. However, belief convergence is a non-linear function of prior12

strength and it becomes increasingly difficult to convince the remaining pool13

of dissenters. I discuss the necessary conditions for consensus formation under14

Bayesian learning and show that apparent deviations from the Bayesian ideal15

can still be accommodated within the same conceptual framework. I argue that16

a generalized Bayesian model provides a bridge between competing theories of17

climate scepticism as a social phenomenon.18
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1 Introduction21

Climate change has come to represent a defining policy issue of our age. Yet22

support for comprehensive climate policy at the global scale remains elusive.23
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Decades of accumulated research and an overwhelming scientific consensus24

have not been enough to convince everyone. Many policy makers and ordinary25

citizens remain openly sceptical about the human role in our changing climate26

([1], [2], [3], [4], [5], [6], [7], [8]). What are we to make of this scepticism?27

And just how much evidence would it take to convince climate sceptics that28

they are wrong? I seek to answer these questions within an empirical Bayesian29

framework. My goal is to understand how sceptics would respond to increasing30

evidence for human-induced climate change, provided that they update their31

beliefs rationally. In so doing, I hope to shed light on our current policy impasse32

and the possibility for finding common ground in the near future.33

Beliefs about climate change are powerful. They dictate our choices as34

individuals and policies as societies. Our beliefs also shape how we interpret35

new information about the world. We are more predisposed to accept data36

that accords with our priors, and vice versa. For a climate sceptic, as for37

anyone else, beliefs provide a lens through which information is subjectively38

interrogated and made intelligible. Naturally, this is not to say that beliefs are39

immutable. A central theme of Bayesianism — the intellectual framework for40

this paper — is the process by which beliefs are updated through exposure41

to new information. But our responsiveness to this new information may be42

greatly diminished, depending on how strongly we hold our existing beliefs.43

Exactly how great of a diminishing effect is the focus of this paper. To preview44

my method and findings, I consider a range of sceptic beliefs and examine how45

these “priors” modulate a person’s responsiveness to climate data. I find that46

available evidence in the form of instrumental climate data tends to overwhelm47

all but the most extreme cases. However, I also document the non-linear effect48

that beliefs have on convergence with the scientific consensus. Even as most49

sceptic priors are overwhelmed by the evidence for climate change, it becomes50

increasingly difficult to convince the remaining dissenters that they are wrong.51

Numerous studies have explored the cultural and psychological factors un-52

derlying climate scepticism. These include [9], [10], [11], [12], [13], [14], [15], [16]53

— see [17] for a recent review. Broadly speaking, these studies divide into two54

camps. One strand of the literature emphasises the so-called “deficit model,”55

which posits that climate scepticism originates from a lack of relevant back-56

ground knowledge. This includes an understanding of the underlying evidence57

and physical mechanisms, as well as the true extent of the scientific consensus.58

However, another camp has come to advocate for a theory of “cultural cog-59

nition,” which interprets climate scepticism as a social phenomenon resulting60

from shared value systems and group identity dynamics. In this latter view,61

a person’s scientific sophistication is relevant only insofar as it allows them62

to better marshal arguments in support of pre-determined positions (i.e. rein-63

forcing cultural and tribal affiliations). I shall return to these two competing64

frameworks later in the paper. For the moment, my concern is less with the65

origins of climate scepticism than what it represents: namely, a set of beliefs66

about the rates and causes of global climate change.67

A convenient way to model beliefs about climate change is by defining68

scepticism in terms of climate sensitivity, i.e. the temperature response to a69
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doubling of CO2. Specifically, we can map sceptic beliefs directly on to subjec-70

tive estimates of climate sensitivity, because they both describe the probable71

causes and distribution of future warming. The particular measure of climate72

sensitivity that I focus on here is the transient climate response (TCR). For-73

mally, TCR describes the warming at the time of CO2 doubling — i.e. after74

70 years — in a 1% per year increasing CO2 experiment [18]. For the purposes75

of this paper, however, it will simply be thought of as the contemporaneous76

change in global temperature that results from a steady doubling of atmo-77

spheric CO2.78

According to the the Intergovernmental Panel on Climate Change (IPCC),79

TCR is “likely” to be somewhere in the range of 1.0–2.5 °C ([18]). This corre-80

sponds to an approximate 66–100% probability interval in IPCC terminology.81

The IPCC further emphasizes the inherently Bayesian nature of climate sen-82

sitivity estimates, going so far as to state:83

[T]he probabilistic estimates available in the literature for climate system84

parameters, such as ECS [i.e. equilibrium climate sensitivity] and TCR85

have all been based, implicitly or explicitly, on adopting a Bayesian86

approach and therefore, even if it is not explicitly stated, involve using87

some kind of prior information. [18, p. 922]88

To understand why classical (i.e. frequentist) methods are ill-suited for89

the task of producing credible estimates of climate sensitivity, recall that fre-90

quentism interprets probability as the limiting frequency in a large number of91

repeated draws. Such a narrow definition holds little relevance to the question92

of climate sensitivity, for which there exists but one unique value. There is93

no population of “sensitivities” to draw samples from. I too adopt a Bayesian94

framework for determining climate sensitivity and its concomitant policy im-95

plications. However, my approach differs from the previous literature along96

several dimensions.97

The most obvious point of departure is the fact that I deliberately focus98

on the beliefs of sceptics. Priors for determining climate sensitivity are usually99

based on paleo data, the judgments of scientific experts, or noninformative100

methods. Such approaches may possess obvious scientific merit for establishing101

a best estimate of climate sensitivity. Yet, they are of limited relevance for102

understanding people’s motivations and voting behaviour when it comes to103

actual climate policy. My approach is to take sceptics at their word and work104

through to the conclusions of their stated priors. In other words, my goal is105

to recover posterior probabilities about the rate and causes of climate change106

that are logically consistent with the initial beliefs of these sceptics.107

Contrarian climate beliefs have also been largely ignored in the economic108

and policy literature to date. The handful of studies that do consider policy109

options from the sceptic perspective have tended to emphasise edge scenar-110

ios like climate catastrophe and irreversibility. For example, [19] introduces111

an Integrated Assessment Model (IAM) of heterogeneous agents that incorpo-112

rates various degrees of climate scepticism. She shows that a world comprised113

only of sceptical policy makers will make sufficient investments in mitigation114
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measures to avoid catastrophic outcomes. The key mechanism is a dominant115

subset of “weak” sceptics who are sufficiently concerned by anthropogenic cli-116

mate change that they reduce their emissions accordingly. [19] does not allow117

for learning in her simulations.1 However, theoretical work by [21] show that118

climate sceptics actually have an incentive to reduce emissions, since it will119

facilitate learning about the true causes of climate change. While it is possible120

for an increase in emissions to yield similar learning effects, the irreversibil-121

ity of climate change renders this an inferior strategy. From a methodological122

perspective, the present paper differs from these earlier studies by combining123

Bayesian learning with an empirical framework.2 Unlike the existing numerical124

and game-theoretic approaches, I am not attempting to prescribe an optimal125

emissions strategy or learning paths for climate sceptics under future uncer-126

tainty. Rather, my goal is to establish some ground rules for thinking about127

climate policy today, given the information that is already available to us.128

Another distinguishing feature of this paper is that the results are derived129

via conceptually straightforward time-series regression analysis. While climate130

scientists have typically relied on complex computer models to simulate TCR,131

a growing body of research is aimed at understanding the link between human132

activities and climate change through the purview of time-series econometrics.133

Much of this literature has concerned itself with the apparent non-stationarity134

of climate data over time. The present paper takes as its foundation recent re-135

search ([25], [26], [27], [28]), which argues convincingly that global surface tem-136

peratures and anthropogenic forcings are best described as trend-stationary137

processes, incorporating common structural breaks.3 The upshot is to per-138

mit the use of level terms within an ordinary least squares (OLS) regression139

framework. Such matters notwithstanding, virtually all econometric studies of140

climate change attribution to date have been carried out in the frequentist141

paradigm. They do not consider the influence of priors, nor are they able to142

yield the probabilistic estimates that are characteristic of Bayesian analysis.143

A noteworthy and early exception is that of [32], who are motivated to adopt144

a Bayesian approach because of multicollinearity in their anthropogenic emis-145

sions data. Such multicollinearity does not plague newer datasets, since these146

are defined in terms of common units (e.g. Wm−2). Further, [32] do not con-147

sider the influence of overtly contrarian priors as a basis for affecting policy.148

1 It should be said that there is an important literature on Bayesian learning in IAMs
that originates with [20]. But I am unaware of any IAM studies that explicitly try to model
learning by climate sceptics.

2 In terms of tangentially related empirical work, [22] shows that spatial heterogeneity in
local climate change effects and temperatures can partially explain persistent scepticism in
different regions of the United States. [23] does not deal with sceptics per se, but charac-
terises learning about climate as a (potentially) Bayesian process where individuals make
inferences based on local weather shocks. This builds off of earlier work by [24], who finds
that longer spells of abnormal local weather patterns are consistent with Bayesian updating
about climate beliefs.

3 Another group of researchers beginning with [29], has argued that the instrumental tem-
perature record contains a stochastic trend that is imparted by, and therefore cointegrates
with, the time-series data of radiative forcings. The reader is referred to [30] and [31] for a
helpful overviews of this debate.
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2 Econometric approach149

2.1 Bayesian regression overview150

The Bayesian regression framework is less familiar to many researchers than151

the frequentist paradigm that is commonly taught in universities. For this152

reason, I provide a brief overview of the key principles of the Bayesian method153

and highlight some important distinctions versus the frequentist approach.154

A Bayesian regression model uses the logical structure of Bayes’ theorem155

to estimate probable values of a set of parameters θ, given data X:156

p(θ|X) =
p(X|θ)p(θ)

p(X)
. (1)

Here, p(θ|X) is known as the posterior and serves as the fundamental157

criterion of interest in the Bayesian framework. The posterior asks, “What are158

the probable values of our parameters, given the observed data?” This stands159

in direct contrast to the first term in the right-hand numerator, p(X|θ), which160

is the familiar likelihood function from frequentist statistics. The likelihood161

essentially reverses the question posed by the posterior and instead asks, “How162

likely we are to observe some data for a given set of parameters (e.g. based on163

an assumption about the data generating process)?” The second term in the164

numerator is the prior, p(θ). While the prior can take on any distributional165

form, it should in principle encapsulate our knowledge about the parameters166

before we have observed the data. Insofar as we are interested in learning167

about θ, it is common practice to ignore the term in the denominator, p(X).168

This is simply the marginal probability of the data and can be thought of as169

a normalisation constant, which helps to ensure that the posterior is a proper170

probability distribution (i.e. integrates to one) and can be calculated ad hoc171

if needed. For this reason, eq.(1) is typically re-written as172

p(θ|X) ∝ p(X|θ)p(θ). (2)

Equation (2) embodies the mantra of Bayesian statistics: “The posterior is173

proportional to the likelihood times the prior.” Solving for the posterior typi-174

cally involves the combination of various integrals, which cannot be calculated175

analytically.4 Fortunately, we can simulate the posterior density computation-176

ally using Markov Chain Monte Carlo (MCMC) routines. This can be done177

for virtually any combination of prior and likelihood function. Obtaining a178

valid posterior is then simply a matter of: (i) choosing a prior distribution for179

our regression parameters, i.e. regression coefficients and variances; and (ii)180

specifying a likelihood function to fit the data. For ease of exposition — how181

we map parameter values to beliefs about TCR will be determined by the182

specification of the regression model — I begin with the likelihood function.183

4 So-called conjugate priors are a prominent exception and belong to the same distribu-
tion family as the resulting posterior. However, conjugacy places strong restrictions on the
questions that can asked of the data.
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2.2 Likelihood function184

The likelihood function is governed by the choice of empirical model. Following185

[33] and [26], I model global temperatures using the regression equation186

GMSTt = α0 + β1RFt + γ2V OLCt + δ3SOIt + η4AMOt + ϵt, (3)

where ϵt = ϕϵt−1+νt is a first-order autoregressive, or AR(1), error process.187

Here, GMST is the global mean surface temperature anomaly relative188

to the pre-industrial period (defined as the 1871–1900 average); RF is total189

radiative forcing due to both anthropogenic and natural factors (excluding vol-190

canic eruptions); V OLC is the radiative forcing due to volcanic stratospheric191

aerosols; and SOI and AMO are scaled indices of these respective climatic192

phenomena. The subscript t denotes time. Specifying that the error term ϵ193

follows an AR(1) process allows us to account for dynamic elements such as194

potential autocorrelation.195

Two points merit further discussion before continuing. First, nothing much196

hinges on the use of OLS for estimating TCR. For example, the β1 coefficient197

above is equivalent to the “climate resistance” constant (ρ) described in [34];198

a point I shall return to later. OLS simply provides a convenient method for199

combining data and priors in a consistent Bayesian framework. Other methods200

could in principle be used to derive the same results. Second, the use of a201

composite RF variable that combines both anthropogenic and natural forcings202

may, at first blush, seem an odd choice. After all, the goal of this paper is to203

separate out and interrogate scepticism specifically about the human role in204

climate change. However, recall that the underlying forcings in my dataset are205

all expressed in terms of a common unit (i.e. Wm−2). This circumvents the206

multicollinearity problems that would arise from estimating an econometric207

model on forcings that have been separated out.5 Econometric issues aside, the208

use of a common forcing unit ensures that I don’t run the risk of estimating209

different coefficients, which would imply an inconsistent response of the climate210

system to identical forcings. The use of a composite forcing series is thus a211

necessary step to ensure that the model remains physically consistent.6 I shall212

demonstrate that relaxing these constraints later in the paper nonetheless213

yields virtually identical conclusions as the physically correct specification.214

Returning to my primary regression model, eq. (3) implies a likelihood215

function that is multivariate normal,216

p(GMST |β, σ2) =
1

(2πσ2)
T/2

exp
[
− (GMST −Xβ)′(GMST −Xβ)

2σ2

]
, (4)

5 Anthropogenic forcings such as CO2, CH4, and N2O all follow very similar trends over
time. Any empirical model that does not constrain these forcings in some way will therefore
struggle to correctly attribute warming between them.

6 Volcanic aerosols are an exception because they impart only a transitory level of forc-
ing. This explains why V OLC may be included as a separate component in the regression
equation [26].
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where X is the design matrix of explanatory variables; β is the coefficient217

vector; σ2 = Var(ϵ) is the variance of the error term; and T = 140 is the218

number of years in the collated, historical dataset. Eq. (4) can also be written219

more simply as GMST |β, σ2 ∼ NT (Xβ, σ2I).220

An important feature of eqs. (3) and (4) is that they define how we should221

map probabilities about the regression parameters to beliefs about climate222

sensitivity. Recall that TCR describes the contemporaneous change in tem-223

perature that will accompany a steady doubling of atmospheric CO2 concen-224

trations. It follows that225

TCR = β1 ∗ F2× , (5)

where β1 is the regression coefficient describing how responsive global tem-226

peratures are to a change in total radiative forcing, and F2× is the change in227

forcing that results from a doubling of CO2. For the latter, I use the IPCC’s228

best estimate of F2× = 3.71 Wm−2 and further assume an additional ±10%229

variation to account for uncertainties over spatial heterogeneity and cloud for-230

mation ([35] and [36]).7 The key point is that assigning a distribution over the231

parameter β1 will necessarily imply a distribution for TCR, and vice versa. We232

therefore have a direct means of linking prior and posterior probabilities of the233

regression parameters to beliefs about TCR. It also means that the primary234

goal of the regression analysis will be to determine probable values of β1. The235

rest of the parameters will take a backseat in the analysis that follows, acting236

largely as controls.237

Eq. (5) contains an implicit assumption that will have bearing on the ex-238

ternal validity of my results — specifically, the extent to which they can be239

extrapolated to different future climate scenarios. Recall, as stated earlier, that240

β1 is equivalent to the “climate resistance” parameter (ρ) defined in [34] as241

the constant sum of the ocean heat uptake efficiency and the climate feedback242

parameter. The importance of this equivalence is that it underscores the role243

of oceanic thermal dynamics in assuming a linear scaling between the differ-244

ent climate components of my regression model. While the linear relationship245

holds for scenarios where radiative forcing increases at steady rates — as was246

true for the historical period under consideration — it cannot be expected to247

do so in scenarios that overturn it. In such cases, ocean heat uptake would248

need to be modeled separately to account for inertia in the climate system249

and its resultant impact on GMST (ibid.). All of which is to say that I will250

limit my analysis to the historical period, as well as future climate scenarios251

that are characterised by steady increases in radiative forcing.252
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Table 1 Sceptic priors

Type TCR (◦C) Implied β1

Moderate lukewarmer N (1, 0.252) N (0.27, 0.06742)
Strong lukewarmer N (1, 0.0652) N (0.27, 0.01752)
Moderate denier N (0, 0.252) N (0, 0.06742)
Strong denier N (0, 0.0652) N (0, 0.01752)

Noninformative − N (0, 1.2142)

Notes: Subjective priors types are defined according to the mean
(Lukewarmer vs Denier) and variance (moderate vs strong)
parameters of normal distributions over TCR. The implied priors
for β1 are obtained using the simple formula described in eq. (5),
i.e. β1 = TCR/3.71. The noninformative prior presented at the
bottom of the table is weakly data-dependent (i.e. depends on the
scale of the data) and is obtained using the default calculation
proposed by [40], β1 ∼ N (0, 2.5 · sd(GMST )/sd(RF )). See text
for details.

3 Priors253

Climate scepticism is a matter of degree. I account for this fact by defining a254

simple typology of sceptics as per Table 1. Summarizing, I distinguish between255

two basic sceptic archetypes based on their best guess for TCR. Lukewarmers256

(c.f. [41]) believe that TCR lies around 1 ◦C — i.e. the lower bound of the257

IPCC “likely” range — while deniers believe that TCR is likely zero. I further258

distinguish these individuals based on how certain they are about their best259

guess. A person with moderate convictions believes that the true value of TCR260

lies within a 1 ◦C uncertainty interval of their prior mean (95% probability),261

while that interval falls to just 0.25 ◦C for someone with strong convictions.262

Altogether, this yields a spectrum of sceptic priors that ranges from moderate263

lukewarmers to strong deniers. Importantly, each sceptic can all be represented264

mathematically by a prior distribution on TCR. I assume normal distributions265

for simplicity, where the mean represents an individual’s best guess and the266

variance their uncertainty.8 Following eq. (5), obtaining priors over β1 is a sim-267

ple matter of dividing the respective TCR distributions by F2× = 3.71 Wm−2.268

These are the parameters that actually enter the Bayesian regression model269

and are also shown in Table 1.270

7 It is worth noting that a number of studies which provide climate sensitivity estimates
via time-series methods — e.g. [37], [38], [33] — do so under the assumption that F2× =
4.37 Wm−2. This outdated figure appears to be based on early calculations by [39]. The
climate sensitivity estimates of these studies may consequently be regarded as inflated.

8 The choice of normally-distributed priors should have little bearing on the generality
of the results. An exception might occur if I assumed a bounded prior, like a triangular or
uniform distribution. Because these bounded distributions assign zero weight to outcomes
beyond a specific interval, no amount of data can shift the posterior beyond that interval.
This idea, that a Bayesian posterior can converge on a particular outcome only if the prior
allocates some (infinitesimal) weight to it, is known colloquially as Cromwell’s rule ([42]).
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In addition to the subjective priors of our stylised sceptics, a useful ref-271

erence case for the analysis is provided by a set of so-called noninformative272

priors. Loosely speaking, noninformative priors are vague and should not priv-273

ilege particular parameter values over others. In practice, however, applied274

Bayesian researchers are advised to use noninformative priors that are weakly275

data-dependent ([43]). For example, priors should be scaled to reflect feasi-276

ble magnitudes of the underlying data. If the data are observed in the order277

of millimeters, then the prior should not allocate plausible weight to values278

in the order of kilometers, etc. This modest form of regularisation not only279

helps to ensure computational stability, but also avoids some of the theoret-280

ical pathologies associated with uniform priors (c.f. [44]). I therefore use a281

set of reference priors that have been scaled to reflect this limited data de-282

pendence. Specifically, given generic dependent variable y and independent283

variable x, I define a noninformative prior for the associated regression coeffi-284

cient βx ∼ N (0, 2.5
sy
sx
), where sx = sd(x).9 In other words, my noninformative285

priors take the form of normal distributions with wide variances. For my de-286

fault regression specification this equates to a prior on the key radiative forcing287

coefficient of β1 ∼ N (0, 1.2142).288

Note that my group of sceptics only hold subjective priors over TCR (and289

thus β1). Noninformative priors are always assumed for the remaining parame-290

ters in the regression equation. Similarly, I acknowledge that these sceptics are,291

of course, highly stylised caricatures. Their priors are simply taken as given.292

I am not concerned with where these priors come from and why they are of293

a particular strength. However, such abstractions are ultimately unimportant294

given the objectives of this study. My goal is to explore how climate sceptics295

would respond to evidence for climate change, provided that they update their296

beliefs rationally. Moreover, it gives a sense of just how strong someone’s prior297

beliefs need to be, so as to preclude the acceptance of any policy interventions.298

4 Data299

The various data sources for this paper are summarised in Table 2. Global300

mean surface temperature data (1850–2017) are taken from the HadCRUT4301

dataset, jointly compiled by the UK Met Office and the Climatic Research302

Unit at the University of East Anglia. Two alternate global temperature re-303

constructions — one provided by [45] (hereafter, CW14) and the other by304

the NASA Goddard Institute for Space Studies (GISTEMP) — are used as305

a check against spatial coverage issues and other uncertainties.10 Radiative306

forcing data, covering both historic estimates (1765–2005) and future scenarios307

(2006-2300), are taken from the Representative Concentration Pathway (RCP)308

database, hosted by the Potsdam Institute for Climate Impact Research. These309

9 This is the default prior suggested by [40], which they refer to as “weakly informative.”
10 HadCRUT5 ([48]) was released during the late revision stages of the manuscript. Among

other things, this updated version of the HadCRUT temperature record adopts a similar
approach to interpolating coverage gaps as in CW14.
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Table 2 Data sources

Variable Key Description Period

GMST HadCRUT4a Global mean surface temperature. Primary se-
ries. Compiled by the UK Met Office and the
Climatic Research Unit at the University of
East Anglia.

1850–2019

CW14b Secondary series. Compiled by [45]. Corrects
for coverage bias in HadCRUT4.

1850–2019

GISTEMPc Secondary series. Compiled by the NASA God-
dard Institute for Space Studies.

1880–2015

RF RCPd Total radiative forcing due to anthropogenic
and natural factors (excluding volcanic
aerosols). Compiled by [46]. Historical data
until 2005, simulated scenarios thereafter.

1765–2300

DF18e Ensemble of 1,000 radiative forcing estimates
compiled by [47]. Used for sensitivity analysis.

1750–2017

VOLC RCPd Radiative forcing due to volcanic stratospheric
aerosols. Compiled by [46].

1750–2005

AMO NOAAf Atlantic Multidecadal Oscillation. 1856–2019
SOI NCARg Southern Oscillation Index. 1866–2019

Notes: The compiled dataset, as well as the code needed to reconstruct from source, are
available at https://github.com/grantmcdermott/sceptic-priors. Sources are listed
below.
a http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
b http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
c http://data.giss.nasa.gov/gistemp
d http://www.pik-potsdam.de/~mmalte/rcps
e https://doi.org/10.5281/zenodo.1323162, (original) https://github.com/
hausfath/OldModels (accessed)
f http://www.esrl.noaa.gov/psd/data/timeseries/AMO
g http://www.cgd.ucar.edu/cas/catalog/climind/soi.html

data include anthropogenic sources of radiative forcing like industrial green-310

house gas emissions, as well as natural sources like solar irradiance and vol-311

canic eruptions. As a part of the sensitivity analyses, I use an ensemble of 1,000312

forcing estimates to capture measurement uncertainty about radiative forcing313

data. This ensemble originates with [47], although I use a recapitulated version314

provided by [49] for ease of access. Data for two major oceanic-atmospheric315

phenomena, the Atlantic Multidecadal Oscillation (AMO, 1856–2017) and the316

Southern Oscillation Index (SOI, 1866–2017), are taken from the U.S. National317

Oceanic and Atmospheric Administration (NOAA) and National Center for318

Atmospheric Research (NCAR). Summarising the common historic dataset319

for which data are available across all series, we have 140 annual observations320

running over 1866–2005. RCP scenarios until 2100 will also be considered for321

making future predictions later in the paper.322

https://github.com/grantmcdermott/sceptic-priors
http://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html
http://www-users.york.ac.uk/~kdc3/papers/coverage2013/series.html
http://data.giss.nasa.gov/gistemp
http://www.pik-potsdam.de/~mmalte/rcps
https://doi.org/10.5281/zenodo.1323162
https://github.com/hausfath/OldModels
https://github.com/hausfath/OldModels
http://www.esrl.noaa.gov/psd/data/timeseries/AMO
http://www.cgd.ucar.edu/cas/catalog/climind/soi.html
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Table 3 Posterior regression results and implied TCR

Lukewarmer Denier

Noninformative Moderate Strong Moderate Strong

RF 0.426 0.417 0.345 0.402 0.076
(0.395, 0.455) (0.387, 0.448) (0.317, 0.373) (0.371, 0.433) (0.040, 0.112)

VOLC 0.048 0.048 0.046 0.047 0.034
(-0.002, 0.098) (-0.000, 0.097) (-0.013, 0.102) (-0.006, 0.097) (-0.080, 0.148)

SOI -0.024 -0.024 -0.025 -0.024 -0.025

(-0.035, -0.012) (-0.035, -0.013) (-0.038, -0.014) (-0.036, -0.013) (-0.044, -0.006)
AMO 0.470 0.468 0.460 0.468 0.448

(0.393, 0.548) (0.386, 0.547) (0.367, 0.552) (0.386, 0.549) (0.289, 0.614)

AR(1) 0.320 0.321 0.378 0.326 0.648
(0.181, 0.444) (0.187, 0.446) (0.245, 0.503) (0.194, 0.454) (0.549, 0.733)

TCR 1.6 1.5 1.3 1.5 0.3
(1.4, 1.8) (1.4, 1.7) (1.1, 1.4) (1.3, 1.7) (0.1, 0.4)

Notes: Results from running the Bayesian regression eq. (3). The table lists the posterior pa-
rameter means, with 95% Bayesian credible intervals in parentheses. Models are distinguished by
the set of priors that were used during the Bayesian estimation. For the first model in column (1),
noninformative priors were specified over all regression parameters. For the remaining models in
columns (2)–(5), subjective priors were specified over the total radiative forcing (RF) coefficient,
with noninformative priors being used for all other parameters. See Table 1 for details. RF and vol-
canic stratospheric aerosols (VOLC) are measured in Wm−2. The Southern Oscillation Index (SOI)
and Atlantic Multidecadal Oscillation (AMO) are measured as scaled indices. The AR(1) term de-
notes an autoregressive error coefficient. The implied TCR values at the bottom of the table are
measured in °C and are obtained by multiplying the coefficient on RF by F2× per eq. (5). The data
have been centered, hence the lack of intercept, and comprise annual observations over 1866–2005.

5 Results323

The analysis for this project was primarily conducted in R ([50], version 4.0.2),324

with the Bayesian computation being passed on to the Stan programming325

language ([51]). All of the code and data needed to reproduce the results can326

be found at the companion GitHub repository.11327

5.1 Regression results and updated TCR beliefs328

The posterior regression results for the various prior types are presented in329

Table 3. Each column contains the results from running the Bayesian regres-330

sion eq. (3) over the full historical data set (1866–2005), using a particular set331

of priors. Beginning with the noninformative case in the first column, all of332

the regression coefficients are credibly different from zero and of the antici-333

pated sign. For example, GMST is negatively correlated with SOI. This is to334

be expected since the El Niño phenomenon is defined by SOI moving into its335

11 https://github.com/grantmcdermott/sceptic-priors.

https://github.com/grantmcdermott/sceptic-priors
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Strong Denier

Strong Lukewarmer

Moderate Denier

Moderate Lukewarmer
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-1 0 1 2 3

TCR (°C)

Fig. 1 TCR densities. Dashed lines denote priors, solid lines denote posteriors. The grey
shaded region denotes the IPCC ”likely” TCR range of 1.0–2.5 °C.

negative phase. The posterior coefficient density on our main parameter of in-336

terest, total radiative forcing (RF ), shows that global temperature will rise by337

an average of 0.426 °C for every Wm−2 increase. Of greater interest, however,338

is the fact that the posterior estimates yielded by the group of sceptic priors339

are very similar to this noninformative case. With the exception of the Strong340

Denier, there is a clear tendency to congregate towards the noninformative341

parameter values.342

Of course, the exact values of the regression parameters are themselves of343

somewhat limited interest. Rather, their primary usefulness is to enable the344

recovery of posterior beliefs about TCR. These are summarised at the bottom345

of Table 3, while the full prior and posterior distributions are plotted in Fig.346

1. We see that the posterior TCR distributions are generally clustered around347

a best estimate of 1.5 °C, with a 95% credible interval in the region of 1.1–348

1.8 °C, depending on the prior. Excepting the Strong Denier, these posterior349

beliefs about TCR fall comfortably within the IPCC “likely” range. However,350

the derived probability intervals are decidedly narrower and TCR values at351

the upper end of the spectrum are discounted accordingly.352

Further insight into the updating behaviour of our stylised sceptics is pro-353

vided by the recursive TCR estimates shown in Fig. 2. Note these recursive354

estimates are run backwards in time, to mimic the perspective of present-day355

sceptic looking back over an increasing body of historical evidence. It is appar-356

ent that stronger convictions about one’s prior beliefs (in the form of a smaller357

prior variance) have a greater dampening effect on posterior outcomes than358

the prior mean. For example, the Moderate Denier converges more rapidly359
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Fig. 2 Recursive TCR estimates. In each panel, the resulting posterior TCR estimate from a
sceptic prior is contrasted with the noninformative case (in black). Solid lines denote means,
while shaded regions (or dashed lines) denote 95% credible intervals. The recursive estimates
are obtained by running regression eq. (5) on an increasing fraction of the historical dataset,
starting nearest to the present day and then iterating backwards in time. Each pass of the
iteration adds another year of data to the sample and re-runs the regression to obtain an
updated posterior TCR. This recursive process continues until the full historical dataset is
encompassed.

to the noninformative distribution than the Strong Lukewarmer. However,360

most sceptics will converge to the noninformative distribution only after “ob-361

serving’ ’ data from a number of decades. Note that this does not alter the362

conclusions that we are able to draw from our Bayesian analysis. As long as363

we have fully specified a prior that encapsulates a person’s initial beliefs, then364

we should in principle treat the full historical dataset as new information for365

updating those beliefs.12 Yet it does highlight the importance of using all the366

available instrumental climate data for building any kind of policy consensus.367

Limiting the sample period under observation to, say, the last 35 years would368

largely preclude the possibility of consensus formation. The tendency of some369

prominent sceptics to rely on satellite records of global temperatures — which370

only stretch back as far as 1979 — could be seen as anecdotal evidence in371

support of this claim (e.g. [52]). A similar argument could be made for a re-372

liance on short-term climate trends and fluctuations that do accurately reflect373

longer-term trends. For example, the relatively brief “hiatus” in warming that374

followed the exceptionally strong 1998 El Niño event ([53]).375

12 As a corollary, concerns over the use of the full historical dataset would only hold sway
in cases where priors already incorporate information that has been obtained from applying
the same model on a sub-sample of the dataset. In that case, we would need to exclude the
sub-sample from the analysis to derive a valid posterior that avoids double counting.
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Fig. 3 When do sceptic beliefs about TCR converge with mainstream estimates? Axes
denote the means and standard deviations of a range of normally-distributed sceptic priors
on TCR. Convergence is defined as occurring when the mean posterior TCR for a particular
prior equals the relevant target value, i.e. (a) 1.3 °C or (b) 1.5 °C. The year of convergence
assumes a starting date of 1866 to coincide with the common historical dataset. Blue shading
indicates that convergence is feasible with historically available data. Red shading indicates
that convergence can only occur once additional data has been accumulated in the future.

Returning to the question posed at the beginning of this paper: How much376

evidence would it take to convince climate sceptics that they are wrong about377

global warming? One way to reframe this question is to think about how much378

data a sceptic needs to observe before their best estimate of climate sensitivity379

begins to look reasonable to a mainstream climate scientist. For example, how380

long would it take before they obtained a mean posterior TCR of 1.3 °C or381

1.5 °C? While it is possible to look at the sceptics’ recursive TCR estimates382

using only historical data, we run into problems with the more extreme priors.383

In short, there is simply not enough historical data to overcome higher orders384

of scepticism. I therefore simulate over 200 years’ worth of global temperature385

and climate data using parameters obtained from the noninformative Bayesian386

regression in Table 3. I then use this simulated data to run a set of secondary387

regressions that are distinguished by a range of different sceptic priors on TCR.388

(This range is much more granular than my original four-sceptic typology.)389

Each regression is estimated recursively, incrementing one year at a time, until390

I obtain a posterior TCR distribution that has a mean value equal to the391

relevant target.392

The results are shown in Fig. 3. While the instrumental climate record393

constitutes enough data to convince many sceptics in this hypothetical pool,394

it does not suffice in all cases. Similarly, although we expect that many present-395

day sceptics will eventually acquiesce their beliefs if climate change continues396

into the future, there remains a small group of hardcore sceptics who defiantly397

refuse convergence with the mainstream even if we project as far ahead as 2100.398

Such is the strength of their priors. Note further that the year of convergence is399

a non-linear function of prior strength, so that it becomes increasingly difficult400

to convince the marginal sceptic. The steady accumulation of evidence over401
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Table 4 TCR: Sensitivity analysis and alternative specifications.

Key TCR Comment

CW14 1.6 (1.4, 1.9) Alternative GMST series.
GISTEMP 1.8 (1.5, 2.0) Alternative GMST series.
HadCRUT ME 1.6 (1.4, 1.8) Measurement error in GMST data.
DF18 1.4 (0.9, 2.6) Measurement error in forcings data.
MEA16 I 2.2 (1.9, 2.5) Adjusted forcing efficacies (means).

MEA16 II 1.9 (-0.7, 3.4) Adjusted forcing efficacies (distributions).
Anthro 1.6 (1.4, 1.8) Separate anthropogenic from natural forcings.
CO2 1.7 (1.3, 2.0) Separate CO2 from other forcings.

Notes: TCR means are given in °C, with 95% credible intervals in parentheses.
The estimates above are computed using noninformative priors only. Full distri-
butions for all prior types across all sensitivity runs are provided in the Supple-
mentary Material.

time will inexorably bring more sceptics into the mainstream fold. But the402

delay between each round of new converts is increasing.403

An implication of this thought experiment is the following. If someone is404

unpersuaded of the human influence on climate today — despite all of the405

available evidence — then there is a high probability that they will remain406

unconvinced for many years hence. The extent to which these extreme sceptics407

constitute a meaningful voting block is an open empirical question. However,408

it is striking to think that such individuals are perhaps already out of reach409

from the perspective of comprehensive climate policy. Even the accumulation410

of evidence over the next several decades may not be enough to convince them.411

Scientific communication efforts should be tailored appropriately, specifically412

targeting moderates for persuasion (e.g. lukewarmers) rather than engaging413

sceptics en masse.414

5.2 Sensitivity analysis415

I test the sensitivity of my findings to a variety of potential data issues and416

alternate model specifications. These range from the use of alternative GMST417

reconstructions, to analysing the impact of measurement error and uncertainty418

over forcing efficacies. A full discussion of the motivating context and technical419

details underlying each sensitivity run — with results across all prior types420

— is provided in the Supplementary Material. Unsurprisingly, I obtain wider421

posterior distributions under specifications that explicitly introduce additional422

forms of uncertainty into the estimation. However, the general effect of these423

alternate specifications is to nudge the posterior TCR mean slightly higher.424

Table 4 summarises the posterior TCR distributions for various sensitivity425

runs when using noninformative priors. I am left to conclude that my primary426

data and modeling choices do not unduly bias the results.427
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Fig. 4 Model fit and prediction: noninformative priors. Temperature anomaly relative to
the 1871–1900 average. Shaded regions denote 95% credible intervals. Note that predictions
for RCPs 2.6 and 4.5 are potentially ill-conditioned and are included for reference purposes
only. See text for details.

5.3 Future temperatures428

Climate policy is largely predicated upon the risks to future generations. As429

such, any policy discussion must consider predictions that run many years into430

the future. TCR estimates are one means of gaining an insight into how global431

temperatures will evolve over the coming decades. A more explicit way of432

demonstrating this is by predicting temperatures until the end of the century.433

While the trajectory of future radiative forcings is subject to much uncer-434

tainty, some guidance is available in the form of the IPCC’s Representative435

Concentration Pathways [54]. These so-called “RCPs” describe a family of436

emissions scenarios, where total anthropogenic forcings evolve according to437

various economic, demographic and technological assumptions. Each RCP in-438

cludes a core component of atmospheric CO2 concentrations, while they all439

share a common prediction for radiative forcing due to solar activity. I take440

these series as the basis for constructing covariate vectors to predict temper-441

atures until the year 2100. For the remaining explanatory variables — strato-442

spheric aerosols, SOI and AMO — I take the mean historical values from my443

dataset. A summary of covariate vectors in 2100 for each RCP scenario is444

provided in the Supplementary Material.445

Fig. 4 shows the temperature evolution for each RCP under the noninfor-446

mative case, which I again take as the benchmark. As discussed in Section447

2.2, it would be inappropriate to extrapolate my regression framework to sce-448

narios that are characterised by significant changes in the rate of radiative449
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(a) RCP 6.0 (b) RCP 8.5

0 1 2 3 4 0 1 2 3 4

Strong Denier

Strong Lukewarmer

Moderate Denier

Moderate Lukewarmer

Noninformative

Temperature anomaly by 2100 (°C)

Fig. 5 Predicted temperature anomaly by 2100: all priors types. Points denote means and
error bars denote 95% credible intervals.

forcing. The confounding effect of (unaccounted for) thermal inertia in the450

oceans would render these model predictions ill-conditioned. I therefore focus451

on RCPs 6.0 and 8.5, which maintain steady rates of forcing increase.13 The452

principal message is that CO2 concentrations must be constrained to well be-453

low RCP 6.0, if we are to avoid a 2 °C rise in global temperatures. Given the454

prominence of this particular threshold in international climate treaties and455

the popular narrative, the result is a reinforcement of commonly cited emis-456

sions targets such as 450 and 540 ppmv. On the other hand, we can expect to457

breech even 3 °C by the year 2100 if we continue along a truly unconstrained458

emissions path à la RCP 8.5.459

What of the predictions yielded by our group of climate sceptics? While it460

is straightforward to redraw Fig. 4 for each prior type, a more intuitive com-461

parison can be made by looking at the full distribution of warming that each462

sceptic expects by the end of the century. Fig. 5 plots the predictive tempera-463

ture density in the year 2100 for all prior types by RCP scenarios 6.0 and 8.5.464

Again, the data have a clear tendency to overwhelm even reasonably staunch465

forms of climate scepticism. Nearly all of the stylised sceptics would expect to466

breach the 2 °C threshold by 2100 under RCP 6.0, while a temperature rise467

of more than 3 °C is likely under under RCP 8.5. An exception can only be468

found in the form of the Strong Denier, whose extreme prior dominates the469

posterior in a way that obviates nearly all concern about large temperature470

increases.471

5.4 Welfare implications and the social cost of carbon472

Provided they consider enough data, we have seen that most climate sceptics473

should be able to agree that a 2 °C target requires limiting CO2 concentrations474

13 Temperature predictions for RCPs 2.6 and 4.5 — depicting respective CO2 stabilisation
scenarios — are included in Fig. 4 for reference purposes only.
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to around 540 ppmv. However, whether someone actually subscribes to policy475

measures aimed at achieving the 2 °C goal is dependent on many things; their476

choice of discount rate, beliefs about the efficacy of policy, damage expecta-477

tions, etc. Such issues are largely beyond the scope of this paper. Nonetheless,478

we may still gain a deeper insight into the welfare implications of our posterior479

TCR values by analysing their effect on the social cost of carbon (SCC). The480

SCC represents the economic costs associated with a marginal unit of CO2481

emissions. It can therefore be thought of as society’s willingness to pay for the482

prevention of future damages associated with human-induced climate change.483

Obtaining SCC estimates generally requires the use of integrated assess-484

ment models (IAMs), which are able to solve for optimal climate policy along a485

dynamic path by simulating across economic and climate systems. The PAGE486

model originally developed by [55], is ideally suited to our present needs. It487

is widely used as one of the major IAMs for evaluating climate policy ([56],488

[57]). More importantly, PAGE accepts random variables as inputs and yields489

the type of probabilistic output that is consistent with the rest of this paper. I490

take the posterior TCR distributions yielded by my Bayesian regression model491

and use these as inputs for calculating the SCC. The PAGE defaults are used492

for the remaining parameters.14493

Table 5 summarizes the SCC distributions across all prior groups in 2020494

US dollars. The full probability distributions are highly skewed and charac-495

terised by extremely long upper tails (see the Supplementary Material). This is496

largely due to the fact that PAGE allows for the possibility of major disruptions497

— e.g. melting of the Greenland ice sheet — at temperatures above 3 °C. Such498

low probability, high impact events would yield tremendous economic losses499

and result in some extreme SCC values as a consequence. Note too that the500

frequency of these events are more common in my adapted version of PAGE,501

since I replace the default triangular (i.e. bounded) TCR distribution with502

the posterior TCR distributions from my model. The latter are approximately503

normally distributed, thus permitting small but positive weight in the tails.504

For this reason, I provide both the mean and median SCC values alongside505

the 95% probability interval.506

Excepting the Strong Denier, the SCC for all prior types is comfortably507

larger than zero. The median value ranges from approximately $30 to $60508

per ton (2020 prices), while the 95% probability interval extends from $10509

to upwards of $130 per ton. These results are consistent with the SCC esti-510

mates found within the literature. For example, an influential synthesis review511

conducted by the United States government under the Obama administration512

established a mean SCC value of $12–$62 per tonne (2007 prices), depending513

on the preferred discount rate ([57]). The encouraging point from a policy514

perspective is that such congruence exists despite the fact that the analysis515

proceeds from an initial position of scepticism. Another way to frame the SCC516

estimates presented here is to imagine that each prior type represents an equal517

14 I use the open-source implementation of the model, MimiPAGE2009 ([58]), which has
been re-written in the Julia programming language ([59]).
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Table 5 Social cost of carbon (US$2020 per ton).

Mean Median 95% Prob. Interval

Noninformative 99 56 (17, 306)
Moderate Lukewarmer 85 53 (16, 249)
Strong Lukewarmer 51 30 (9, 134)
Moderate Denier 82 47 (15, 224)
Strong Denier 1 1 (0, 4)

Notes: Results for each prior type are obtained by simulating
over the full posterior TCR distributions in Table 3 using PAGE
([55], [58]). All remaining parameters are set to the PAGE model
defaults.

segment of a voting population. We would then expect to see broad support518

for a carbon tax of at least $20–$25. While such a thought experiment clearly519

abstracts from the many complications that would arise from free-riding and520

so forth, again we see that nominal climate scepticism does not correspond to521

a mechanical dismissal of climate policy.522

6 Discussion523

We have seen that a non-trivial carbon price is consistent with a range of524

contrarian priors once we allow for updating of beliefs and, crucially, consider525

enough of the available data. An optimist might interpret these findings as a526

sign that common ground on climate policy is closer than many people think.527

On the other hand, they may also help to explain why the policy debate is528

so polarised in the first place. As all intermediate positions are absorbed into529

the mainstream, only the most hardcore sceptics will remain wedded to their530

priors. Such a group is unlikely to brook any proposals for reduced carbon531

emissions and virtually no amount of new information will convince them532

otherwise. Taken together with the persistent scepticism that one sees in actual533

polling data (e.g. [8]), it then becomes reasonable to ask whether real-life534

climate sceptics hold such extreme views? For that matter, are they numerous535

or vocal enough to prevent political action? Such considerations are reinforced536

by the idealized nature of the analysis until now. Irrespective of the scientific537

merit of working through such a set-up, normal people clearly do not update538

their priors in lockstep with a formal Bayesian regression model, supported by539

large dataset of time-series observations.15540

A natural starting point for thinking about these issues is to take a closer541

look at the mechanisms underlying posterior agreement formation. The notion542

that partisans should converge toward consensus with increasing information543

has long been taken as a logical consequence of Bayes’ theorem. Indeed, em-544

pirical evidence to the contrary has been cited as a weakness of the Bayesian545

15 Which is not to say that people fail to update rationally, or even heuristically, in a
Bayesian manner. For further discussion in the context of climate, see [16].
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paradigm and its relevance to real-life problems (e.g. [60]). This is a misconcep-546

tion. Nothing in the Bayesian paradigm precludes the possibility of diverging547

opinions in the face of shared information ([61], [62]). It may even be the case548

that the same information has a polarising effect on individuals, pushing them549

towards opposite conclusions. This is perhaps most easily shown by incorpo-550

rating perceptions of trust and source credibility into our Bayesian model. In551

other words, we must broaden our conception of someone’s “prior” so that it552

describes not only their existing beliefs about some phenomenon S, but also553

the credibility that they assign to different sources of information about S.554

Consider an example, which is closely adapted from a related discussion555

in [61]. Al, Bob and Christie hold different beliefs about climate change. Al is556

a “warmist,” Bob is a “lukewarmer” and Christie is a “denier.” These labels557

are encapsulated by the prior probabilities that each person assigns to climate558

sensitivity S, which we assume for simplicity is either high or low: S ∈ SL, SH .559

Denote by I an individual’s prior information about the world. Then, indexing560

by the first letter of their names, we summarise their prior beliefs about climate561

change as the following probabilities: P (SH |IA) = 0.90, P (SH |IB) = 0.40, and562

P (SH |IC) = 0.10.563

Suppose that the IPCC now publishes its latest assessment report, wherein564

it claims that climate sensitivity is high. How do Al, Bob and Christie respond565

to this new data, D = DH? It turns out that the answer hinges on the re-566

gard that each individual holds for the IPCC itself. For example, let us say567

that all three individuals agree the IPCC would undoubtedly present data568

supporting a high climate sensitivity if that were the true state of the world,569

i.e. P (DH |SH , IA) = P (DH |SH , IB) = P (DH |SH , IC) = 1.00. However, they570

disagree on whether the IPCC can be trusted to disavow the high sensitivity571

hypothesis if the scientific evidence actually supported a low climate sensitiv-572

ity. Despite their different beliefs about climate sensitivity, assume that Al and573

Christie both regard the IPCC as an upstanding institution that can be trusted574

to accurately represent the science on climate change. In contrast, Bob is dubi-575

ous about the motives of the IPCC and believes that the organisation is willing576

to lie in advancement of a preconceived agenda. Representing these beliefs in577

terms of probabilities, we have P (DH |SL, IA) = 0.05, P (DH |SL, IB) = 0.89,578

and P (DH |SL, IC) = 0.05.579

Recovering the posterior beliefs about climate sensitivity for our three in-580

dividuals is now a simple matter of modifying Bayes’ theorem to account for581

each person’s relative trust in the IPCC. For Al, we have582

P (SH |DH , IA) =
P (DH |SH , IA)P (SH |IA)

P (DH |SH , IA)P (SH |IA) + P (DH |SL, IA)P (SL|IA)

=
1.0× 0.9

1.0× 0.9 + 0.05× 0.1

≈ 0.98.

Similarly, we obtain posterior probabilities of 0.43 for Bob and 0.69 for583

Christie.584
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Taking a step back, Al now believes even more strongly in the high climate585

sensitivity hypothesis, having raised his subjective probability for SH from586

90% to 98%. Christie has experienced a still greater effect and has updated587

her subjective probability for SH from 10% to 69%. She now attaches a larger588

probability to the high sensitivity hypothesis than the low sensitivity alter-589

native. However, the same cannot be said of Bob, who has not been swayed590

by the IPCC report in the slightest. Both his prior and posterior probabil-591

ities suggest that SH only has an approximately 40% chance of being true.592

Bob’s extreme mistrust has effectively led him to discount the IPCC’s high593

sensitivity claim in its entirety.594

Extending the above framework to account for increasing granularity is595

conceptually straightforward. The principal insight remains the same: Trust596

is as much a determinant of whether beliefs are amenable to data — and597

whether individuals converge towards consensus — as the precision of the598

data itself. Such an extension seems especially relevant to the climate change599

debate given the sense of scientific distrust that pervades certain segments of600

society ([63], [64], [65], [66], [67]). Indeed, recent research supports the notion601

that distrust of scientists is causing belief polarization about climate change in602

some demographic groups, even as scientific evidence may increase consensus603

in others ([68], [69]). Similar “backfire” effects have been well documented in604

other fields ([70], [71]).605

Perhaps the most important feature of generalising the Bayesian frame-606

work in this way is that it offers a bridge between competing explanations607

of climate scepticism as a social phenomenon. Whereas the so-called “deficit608

model” posits a lack of scientific knowledge and understanding as key drivers609

of scepticism, advocates of the “cultural cognition” theory argue that group610

identity and value systems are more relevant ([9], [10], [72]). A Bayesian model611

that incorporates perceptions of source credibility is able to accommodate both612

camps. Exposure to new scientific evidence can ameliorate a person’s scepti-613

cism, but only if their priors allow for it. This includes factors like cultural614

identity and whether they cause us to discount some sources of information615

more than others.16616

7 Concluding remarks617

The goal of this paper has been to explore the way in which prior beliefs618

affect our responsiveness to information about climate change. The Bayesian619

paradigm provides a natural framework and I have proposed a group of stylised620

sceptics to embody the degrees of real-world climate scepticism. The headline621

finding is that subjective sceptic priors are generally overwhelmed by the em-622

pirical evidence for climate change. Once they have updated their beliefs in623

16 While the precise theoretical development differs from the framework presented here,
I would note the closely-related concept of Bayesian networks ([73]). Indeed, [68] use a
Bayesian network approach in an experimental setting to document (rational) belief po-
larization after individuals are presented with evidence about climate change. Mistrust of
climate scientists is a primary source of the polarization in their study.
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accordance with the available data, most sceptics demonstrate a clear ten-624

dency to congregate towards the noninformative case that serves as an objec-625

tive reference point for this study. My primary regression specification yields626

a posterior TCR mean and 95% credible interval of 1.6 °C (1.4–1.8 °C) under627

the noninformative prior. This distribution sits comfortably within the IPCC’s628

“likely” TCR range of 1.0–2.5 °C and is robust to a variety of sensitivity checks.629

Indeed, accounting for factors that could conceivably affect the results — al-630

ternate data sources, adjusted forcing efficacies, measurement error, etc. —631

tends to nudge the mean TCR estimate upwards.632

Unsurprisingly, given their congruence with mainstream estimates, I show633

that the updated beliefs of various sceptics are generally consistent with a634

social cost of carbon of at least US$25 per ton. Only those with extreme635

a priori sceptic beliefs would find themselves in disagreement. Or, feel any636

confidence in the notion that unfettered emissions growth will not lead to637

substantial future warming. This suggests that a rational climate sceptic, even638

one that holds relatively strong prior beliefs to begin with, could embrace639

policy measures to constrain CO2 emissions once they have seen all of the640

available data. At the same time, perhaps the most salient finding of this641

paper is that belief convergence is a non-linear function of prior strength.642

Anyone who remains unconvinced by the available data today is unlikely to643

converge with the mainstream consensus for many years hence. Their implied644

priors are of such a strength that even decades more of accumulated evidence645

may not be enough to convince them. Fully disentangling the root causes of646

such information immunity — whether climate sceptics are extremely sure of647

their priors, distrustful of scientists and other experts, or some combination648

thereof — remains an important area for future research.649
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